In the Matter of

Petition for Forbearance From the Current Pricing Rules for the Unbundled Network Element Platform WC Docket No. 03-157

DECLARATION OF THOMAS W. HAZLETT, PH.D., ARTHUR M. HAVENNER, PH.D., AND COLEMAN BAZELON, PH.D.

1. My name is Thomas W. Hazlett. I am a Senior Fellow at the Manhattan Institute for Policy Research, and a former Chief Economist of the Federal Communications Commission. Attachment 1 is a copy of my curriculum vitae.

2. My name is Arthur M. Havenner. I am a Professor of Agricultural and Resource Economics at the University of California, Davis. Attachment 2 is a copy of my curriculum vitae.

3. My name is Coleman Bazelon. I am a Vice President of Analysis Group, Inc. Attachment 3 is a copy of my curriculum vitae.

4. We have been asked by Verizon to analyze recent trends in telecommunications investment, and in particular the relationship between these developments and the use of the unbundled network element platform ("UNE-P") at TELRIC rates. We have also been asked to evaluate a recent study by the Phoenix Center that purports to show that the rise in the use of UNE-P has increased investment by incumbent local exchange carriers ("ILECs").

5. This declaration is organized as follows. Section I provides an introduction and summary of our findings. Section II demonstrates that telecommunications investment – by both incumbent and competitive carriers – has declined sharply in the past two years, and that available financial and economic evidence indicate that this is due in large part to the rise of the TELRIC-priced UNE-P. Section III demonstrates that the recent analysis by the Phoenix Center does not support the conclusion that increases in UNE-P lines have caused ILECs to increase investment.

I. Introduction and Summary

6. Investment in local wireline facilities, by both competitive and incumbent carriers, has recently declined in the United States. The decline is so substantial that it has reduced the capital stock of the major local telecommunications providers. While no one
factor explains the entire decline, a major contributing cause is the regulatory policy that enables competing carriers to resell the entire suite of an incumbent’s network services at sharply discounted wholesale rates. From year-end 2000 through 2002, such resale – known as the UNE platform or UNE-P – increased by more than 200 percent, from 2.838 million lines to 10.225 million.¹

7. There is abundant evidence from the marketplace that the decline in wireline investment is due in substantial part to the rise of UNE-P. This causality is supported by the pattern of investment taking place in the sector as compared with other sectors, the reaction of facilities-based competitors to UNE-P, and the wide consensus among investment analysts and telecommunications technology suppliers that the expanding use of UNE-P threatens capital expenditures on network assets.

8. A recent paper by the Phoenix Center presents the results of an econometric study that, it argues, support an alternative view. The paper asserts that UNE-P’s rapid growth has abbreviated the fall in investment by the Bell Operating Companies (BOCs), which is entirely (or more than entirely) attributable to other factors. Neither the models estimated, nor the conclusions reached, hold up under careful scrutiny, which reveals their central finding to be wholly the product of spurious correlation. This is demonstrated by the fact that three alternative models of the relationship between investment and UNE-P that correct Phoenix’s methodology produce sharply contrasting results. If the Phoenix models accurately estimated the true relationship, we would not expect these alternative models to negate their results.

II. The Decline of Telecommunications Investment

9. In this section, we first describe ways to measure investment in wireline telecommunications. We then demonstrate that, under any appropriate measure, investment in wireline telecoms has declined in recent years, both for incumbent local exchange carriers and competing local exchange carriers. Finally, we demonstrate that one of the primary causes for this decline is the regulation requiring wholesale access to the UNE platform at TELRIC rates. We show, for example, that the investment decline is most marked in telecommunications segments where unbundling policies have been most aggressive. While investment flows have slowed for wireless and cable – which are both subject to many of the same market forces as local wireline markets but are free of the regulatory burdens imposed on ILECs – both have outperformed incumbent telephone companies in continuing to attract investment capital.

A. Measuring Telecommunications Investment

10. There is some debate about the proper measure of investment in the telecommunications industry. To avoid confusion, it is important to define terms. To economists, investment refers to the creation of new productive assets. Investment expenditures cause capital stock – approximated in telecommunications networks by the

¹ FCC, Local Telephone Competition: Status as of December 31, 2002, at Table 4 (June 2003).
total book value of plant and equipment — to rise. By contrast, depreciation refers to the
depreciation refers to the
wearing out of old capital, which causes capital stock to fall. Each year, capital stock
may change depending on the relationship between new investment and depreciation.
For example, if new investment exceeds depreciation, capital stock will rise. Gross
capital stock is total capital stock before subtracting depreciated capital, whereas net
capital stock is total capital stock after subtracting depreciation.

11. Economic depreciation is distinguished from accounting depreciation. Economic
depreciation is the amount of capital actually consumed; accounting depreciation, by
contrast, is the amount of capital that is theoretically consumed pursuant to a depreciation
schedule consistent with accounting principles, tax law, or regulatory guidelines.

12. Because all capital goods, such as telecommunications equipment, depreciate,
investment is required to maintain capital stock at constant levels. Put differently, if
investment falls below the level of economic depreciation, capital stock will fall and,
consequently, output (adjusted for quality) will fall. In capital-intensive and high-
technology industries, the amount of capital investment required merely to maintain the
level of capital stock is typically very large. Investment analysts estimate, for example,
that the maintenance level of investment for the local wireline telecommunications
industry is approximately 15 to 20 percent of revenues, which represents an average of
about $20 billion per year.²

13. Economists distinguish between the investment required to maintain capital stock and
other investment. Investment that merely replaces depreciated capital does not lead to
expanded output or productivity but just maintains the status quo. In contrast, investment
above this maintenance level increases the net capital stock and creates the potential for
future gains in productivity. Gross investment is a measure of capital expenditures that
includes this maintenance level of investment. Gross Investment is equivalent to the
change in Gross Capital Stock. Net investment is a measure of capital expenditures that
subtracts this replacement capital. The investment analyst community typically focuses
on gross investment for the companies they cover, calling it “capital expenditures” or
“cap ex.”

14. One principal source of data on investment by incumbent local exchange carriers in
their regulated lines of business is the FCC’s ARMIS database.³ ARMIS provides
information enabling calculation of some of the variables described above. First, ARMIS
provides the gross capital stock of each of the larger ILECs, including the BOCs. This is
reported in ARMIS as Telecommunications Plant in Service or TPIS. TPIS is the total
book value — before depreciation — of central office switching assets, central office
transmission assets, information origination and termination assets, cable and wire
facilities, operator systems, general support assets, and amortizable assets. ARMIS
reports TPIS by Company Study Area (a “COSA”). Some COSAs correspond to

² Skyline Marketing Group reports that the maintenance level for Regional Bell Operating Company
investments is 15-20 percent (CapEx/Rev). Skyline Marketing Group, CapEx Report: 2002 Annual Report,
operations within a single state, while other COSAs are an aggregation of state COSAs and cover operations in multiple states.4

15. Second, ARMIS contains a category called Additions to TPIS that approximates gross investment. This represents the book value of capital investments at their time of purchase. This category is closely related to what investment analysts term cap ex.

16. Third, ARMIS contains a category called Average Net Investment that is TPIS adjusted for “Other Investment” and “Reserves.”5 Contrary to what its name implies, this category does not represent an investment flow, but something close to net capital stock. Therefore, the change in Average Net Investment in any given year is a rough measure of what economists call net investment.6

B. The Decline of Wireline Telecom Investment

17. Investment by wireline local exchange carriers is down sharply not only from the highs of 2000 and 2001 but also from historic averages. According to a recent report by Skyline Marketing Group, the amount of annual gross investment by wireline telecommunications carriers (both local and long distance) declined from $104.8 billion in 2000 to $42.8 billion in 2002—a reduction of over $60 billion in just two years.7 According to the Telecommunications Industry Association, spending by carriers on telecommunications equipment (one crucial component of network capital) decreased from $58 billion in 2000 to $22 billion in 2002.8 Independent analysts doubt U.S. wireline investment for 2003 and 2004 will significantly rebound.9

4 For example, BellSouth’s nine-state region forms a single COSA (KY, TN, NC, SC, GA, AL, MI, LA, FL), as does the five-state Ameritech region owned by SBC (WI, IL, IN, OH, MI), the five-state Southwestern Bell Telephone region owned by SBC (TX, OK, KS, AK, MO), the two-state Pacific Bell region owned by SBC (CA, NV), and the five-state New England Telephone region owned by Verizon (MA, ME, NH, RI, VT).

5 Other investment includes “other jurisdictional assets,” “property held for future telecommunications use,” “telecommunications plant under construction,” “plant acquisition adjustment,” “investment in nonaffiliated companies,” “other deferred charges,” “inventories,” “cash working capital,” and “FCC investment adjustment.” “Reserves” is the sum of “Accumulated Depreciation,” “Accumulated Amortization,” “Deferred Operating Income Taxes,” “Customer Deposits,” “Other Deferred Credits,” “Other Long-Term Liabilities,” “Deferred Tax Liabilities,” “Other Jurisdictional Liabilities and Deferred Credits,” and “FCC Reserve Adjustment.” ARMIS Report 43-01 Instructions. Available at http://www.fcc.gov/web/armis/instructions/2002/definitions01.htm#TIR.

6 A complication is that one component of “Reserves” is accounting depreciation. Economic depreciation is not reported in ARMIS. Reserves also includes a number of items that are not directly related to network investments, such as Deferred Tax Liabilities and Other Long-Term Liabilities.

8 TIA, 2003 Telecommunications Market Review and Forecast at 56 – Tables II-4.1 & II-4.2 (2003). Spending by carriers on telecommunications equipment decreased by 26.2 percent in 2001 (from $58B to $43B) and by 49.1 percent in 2002 (from $43B to $22B).

18. The decline in overall telecom investment reflects a decrease in spending by both competitive local exchange carriers (CLECs) and incumbent carriers (ILECs). In both cases, current levels of gross investment are below not only the peak-years of 1999-2001, but also below previous levels when measured in the standard way, which is cap ex as a percent of revenues.

19. Gross investment by both private and public CLECs fell by 39 percent from 2000 to 2001, and by an additional 81 percent from 2001 to 2002. According to ALTS, a CLEC trade association, capital expenditures by the subset of publicly traded, facilities-based CLECs decreased by 19 percent from 2000 to 2001, and by 56 percent from 2001 to 2002. See Figure 1. As a percentage of revenues, the decline for these CLECs was even greater – 71 percent from 2000 to 2002. See Figure 2. Under this measure, CLEC investment has plummeted to about one-quarter its level in 1999-2000.

![CLEC Gross Investment](image)

Source: ALTS: The State of Local Competition 2003, p. 10 (April 2003).

would expect the total level of US wireline spending, which approximates $36 billion for 2003, down from roughly $110 billion in 2000, will remain at these depressed levels for some time.” Fulcrum Global Partners, *Wireline Communications: Thoughts on FCC Order*, February 25, 2003. Another analyst is even more pessimistic: “Precursor doubts that wireline telecom capex will meet guidance for ’03 or expectations for ’04....Telecom has not bottomed; it is not even close....We project that wireline capex is trending towards ~$23b for the year, significantly below guidance of ~$28b-$30b.” Precursor Group, *Wireline Telecom Capex Guidance Is Likely Too Optimistic*, August 8, 2003 (emphasis in original).

20. There has also been a significant decline in investment by incumbent local exchange carriers. Figure 3 shows the net capital stock of BellSouth, SBC, and Verizon from 1990 through 2002. (The remaining Bell Operating Company, Qwest, has not yet reported its 2002 numbers.) While net capital stock appeared to rise during the last of the Internet boom, it was a relatively minor uptick, and substantial disinvestment appears to be taking place since. Net capital stock of these Bell companies is down approximately 12 percent – $13 billion – since enactment of the 1996 Telecommunications Act.
21. Not surprisingly, the period has seen a marked reduction in annual capital expenditures. As demonstrated in Figure 4, for example, annual gross investment by the Bell companies has declined significantly as a percentage of BOC revenues. By that measure, gross investment has declined not only below the years of peak investment in 2000 and 2001, but is also below any level seen in a decade.
22. Figure 4 shows that, in 2002, BOC capital spending was just at maintenance level, and that it is now falling beneath it in 2003. This implies that the networks owned by these companies will not be enhanced to provide for greater productive activity. Indeed, it suggests that the leading local exchange networks could stagnate or decline in functionality. As investment analysts have recognized, there are potentially serious consequences for consumers when cap ex spending goes below maintenance levels. Morgan Stanley cites the experience of Ameritech, which reduced its cap ex to sales ratio to 13.7% in 1994 and 1995. “Service quality complaints filed with state regulatory authorities ramped significantly from 15 per 1 million access lines in 1994 to 1,044 per million in 2000 by the time the [acquisition by SBC] was closed.”

C. Evidence that the Decline in Telecom Investment is Linked To The Rise in TELRIC-Pricted UNE-P.

23. Although there has been much contentious debate over the effects of the telephone network unbundling rules on investment incentives, there is one area of clear consensus: financial analysts widely believe that the rational strategy under the current regulatory regime is for local phone companies to slash capital expenditures. As financial analysts have repeatedly found, one important factor making telecommunications investments uneconomic (for both incumbent and competing carriers) is the prospect that UNE-P line growth will ramp up. The available evidence supports this conclusion.

24. This is seen in cable telephony. The cable TV industry passes 97 percent of U.S. households with a wire capable of delivering competition to local exchange carrier networks. Cox Cable maintains that cable systems can profitably upgrade their local networks to offer voice service, investing about $610 per subscriber to realize 35% cash flow margins on monthly revenues averaging $50 per customer per month, attracting forty percent market share in just a few years. Three years ago, several large cable companies were investing in cable telephony. But, with the emergence of high UNE-P line growth, AT&T Broadband, Comcast (now owner of AT&T Broadband), and Cablevision pulled back from construction of rival networks, Cox being the one major system operator to continue its build-out uninterrupted. As they have for several years, cable operators continue to monitor the progress of IP telephony, with some planning to take advantage of this facilities-based strategy in the near future. But, UNE-P threatens to undercut investors in competitive facilities. Cox Cable argues to “[s]hift the FCC’s focus away from CLEC resale and UNE models... toward facilities-based competition.” As Legg Mason noted in a recent appraisal of cable TV system assets, “UNE-P reduces [the] voice opportunity.”

25. Data from the FCC also show that UNE-P growth is coming at the expense of facilities-based competition. As UNE-P lines grew over 200% in the 2000-2002 period, facilities-based competitive lines grew just twenty-three percent – a substantial slowing from their previous trend. The number of facilities based non-cable lines decreased from 4.1 million at the end of 2000 to 3.4 million by the end of 2002. The correlation between UNE-P lines and non-cable facilities based lines is almost a perfect -1 (-.99685), meaning that UNE-P line growth has been accompanied by a simultaneous reduction in facilities-based competitive lines period by period. The negative relationship between UNE-P lines and facilities based competitive entry is also evident in a simple regression analysis we performed. It predicts that every new UNE-P line is associated with about 0.12 fewer facilities-based competitive lines.

20 We regressed the number of non-cable CLEC-owned access lines against a constant term and the previous period’s number of UNE-P lines. The data were semi-annual from the second half of 1999 through the end of 2002. The regression coefficients were significant at the 95% confidence level, and they explain 90% of the growth in the facilities based lines (adjusted R-squared = 0.9036).
26. Second, the evidence demonstrates that the decline in investment by incumbent local exchange carriers has been caused to some substantial degree by current regulatory policies. Since the emergence of substantial UNE-P line growth in 2000, the simple correlation between UNE-P lines and Bell Operating Company (BOC) investment is –0.94, indicating a strongly negative relationship.21

27. Financial analysts also view the current regulatory structure as strongly anti-investment. This is an important source of information, in that analysts evaluate financial opportunities for investors. Analysts are typically objective in the sense that they have no preference for one industry over another, but seek to understand how economic and regulatory factors affect future returns. They view UNE-P as a negative for both RBOC investors and the entire telecommunications industry.22 The continuation of UNE-P at current TELRIC pricing is seen as detrimental to telecommunications investment.23 Telecommunications networks are seen to be decreasing investment in direct response to wholesale price regulation. As Merrill Lynch reports, “SBC continues to be the RBOC with the worst retail to UNE-P line migration.”24 At the same time, SBC is cutting gross investment most aggressively.25

28. Under the current regulatory structure, analysts note that decreasing investment is not just correlated with UNE-P, but the smart thing for BOCs to do. One “Bright spot” for the investment analyst community following the first quarter of 2003 was that

21 The correlation coefficient measures the degree to which two variables move together. A correlation coefficient of –0.94 implies that when one of the variables, say UNE-P lines, increases, the other variable, in this case gross BOC investment, decreases. The coefficients can vary between –1 and 1; positive means they move in the same direction; negative means they move in opposite directions; the closer to either 1 or –1, the stronger the relation.

22 "How the FCC Decision Depresses Overall Equipment Demand. Precursor believes the FCC’s decision to invigorate/extend UNE-P resale competition will likely pressure core telecom equipment spending... (1) Increasing profit pressure forces Bell capex cuts... (2) Enables AT&T and WorldCom to cut current capex to fund UNE-P marketing. Preserving UNE-P for at least four years and making it available to more of the small business market encourages AT&T and WorldCom to swap capex for more UNE-P marketing in order to improve cash flow and profitability short-term. (3) Increases capital investment risk and uncertainty.... (4) Increases necessity of Bell-LD consolidation, reducing capex spending. Given that the government is artificially forcing down local profits, consolidation to achieve cost savings may be the only way to preserve some Bell shareholder value." Precursor Group, FCC Decision Accelerates Dis-investment and Shifts Equipment Demand, March 4, 2003 (emphasis omitted).

23 “The FCC... increased its anti-investment bias by favoring resellers over infrastructure owners and equipment suppliers.” Scott Cleland, Precursor Group, Precursor Returning to Negative Telecom Outlook As FCC Invigorates UNE-P, February 24, 2003 (emphasis omitted).

24 Merrill Lynch, SBC Communications, Comment, April 29, 2003, p. 2. See also, UBS Warburg, "How much Pain from UNE-P?" August 20, 2002: "SBC has lost more retail lines to UNE-P than any other Bell..." and "SBC takes the hardest hit for retail lines lost to UNE-P....", p. 27.

25 Precursor Group, "Telecom Disconnect: Quality of Bell Free Cash Flow Worsening", July 21, 2003: "Among the Bells, SBC has been most aggressive in propping up FCF [free cash flow] with CapEx cuts, followed by BLS and VZ, respectively."
“practically every telco reported capex well below our expectations.”

One firm notes that with SBC’s capex to revenue ratio at 9%, there is little room for further cuts, while Bell South and Qwest “still have some room to cut” at 11% and 12%, respectively, and Verizon at 15% “is likely best positioned to cut.”

As RBOC capital spending falls below maintenance levels, financial analysts are hoping to see deeper cuts.

Morgan Stanley adds that “[a]s the Bells approach spending of at historical [low] mid-teens percentage of sales levels, we do not believe that we have yet witnessed a bottoming of capex. If conditions worsen and UNE-P persists, we would expect more capex cuts across the board.”

29. Some argue that the pattern of telecom investment reflects only the standard leveling off experienced after a period of rapid expansion. While it is true that the opportunities created in the Internet boom, including heightened demand for high-speed data services by both consumers and businesses, attracted investors to provide capital for telephone network infrastructure, this does not explain current trends. The net capital stock owned by RBOCs did not rapidly expand in the boom period, and it is not now leveling off but declining. In contrast, other U.S. communications sectors – such as wireless and cable – expanded their net capital stock at a high rate, and have responded to post-boom conditions by reducing growth but maintaining capital infrastructure.

30. Figure 5 shows the net capital stock for leading “pure play” firms in wireless telephony, cable TV, and satellite TV, along with the RBOCs. Although the growth of capital stock in these other sectors has flattened, in contrast to the wireline sector, capital stock is not declining. This is true despite the fact that these sectors all experienced rapid expansion in the boom phase of the current cycle, while the BOCs did not.

28 “[W]e would not be terribly surprised to see additional cuts from our nation’s largest carriers, as they react to this current FCC order. If these companies are charged with the fiduciary responsibility of the underlying shareholders, at some point it will be more responsible for the companies to begin returning cash flows to shareholders in the form of large dividends or share buy backs, rather than deploying capital into the network to generate negative returns for equity and debt holders.” Fulcrum Global Partners, Wireline Communications: Thoughts on FCC Order, February 25, 2003.
31 These firms are AT&T Wireless and Nextel (wireless telephony); Comcast and CableVision (cable TV), and EchoStar (satellite TV). By focusing on pure plays, it is possible to see the financial picture across different industries. Firms investing in multiple markets typically do not break out capital assets, and so company data offer an unclear picture of the trends in any one industry.
31. Similarly, the cable industry has not reduced its capital stock despite the fact that it, too, has now largely completed a major upgrade of its facilities nationwide. Even after building out two-way digital infrastructure for the delivery of digital video and cable modem service, investment remains at historically high levels. As Figure 6 shows, cable cap ex is much higher than that for the RBOCs, adjusting for their level of investment in 1996.\footnote{While widespread growth of UNE-P has discouraged cable telephony upgrades, the cable industry has been successful in opposing “open access” mandates for video and cable modem service, the two markets in which local cable operators are dominant, and which provide the vast majority of industry revenues.} Similarly, satellite television companies spent substantial sums to create distribution platforms in recent years, and continues to increase net capital stock now.
III. The Phoenix Center Econometric Analysis of the Investment/UNE-P Relationship

32. Contrary to the consensus prevailing in the investment community that UNE-P regulatory policies are deterring investment, a recent study by the Phoenix Center claims that statistical evidence shows a strongly positive correlation between UNE-P lines and investment by incumbent local exchange carriers. While conceding that BOC net capital stock decreased by 7 percent from 2001 to 2002, the paper argues that, but for the rise of UNE-P, the decline in net capital stock would have been even greater (13 percent). The study claims that “each UNE-P access line increased BOC average net investment by $759 per year.”

33. Before addressing other aspects of the analysis, we note that the magnitude of the estimated effect ($759 per UNE-P line) is implausible. The entire net capital stock of the BOCs is currently about $106 billion, or approximately $681 per line. According to the

34 We estimate $106 billion by summing the SBC, Bell South, and Verizon net capital stock data from ARMIS for 2002 and adding 15%. (We add 15% because that was Qwest’s average for the previous three years. We cannot use Qwest’s data from ARMIS for 2002 because it is not reported yet.) The FCC reports
Phoenix study, each UNE-P line results in additional BOC investment exceeding this amount.35 Put differently, the Phoenix study asserts that a BOC spends more than six times its annual average expenditure per line (about $123)36 for each line it loses to UNE-P, and that it spends this amount in just six months after losing the line.37 If true, the magnitude of this effect surely would be noticed by independent observers that have a direct stake in such an outcome. But this has not occurred. Indeed, not only is there a consensus among investment analysts that aggressive UNE-P pricing policies reduce investment, telephone equipment suppliers share the same view. As one large infrastructure supplier recently told the FCC:

While Alcatel agrees with the Commission that competitive access to UNEs can help initiate competition in the local telecommunications market, it is concerned that over-reliance on the ILECs' network elements retards sustainable competitive growth and precludes many of the benefits associated with facilities-based deployment, such as investment, innovation, and redundancy. ... Aggressive unbundling and pricing rules can create perverse economic incentives for competitive telecommunications carriers to rely on the incumbents' network and a disincentive for the incumbent to improve on these facilities.38

34. In addition, as described in more detail in the Appendix, the methods used in the Phoenix study violate sound economic reasoning. First, the analysis does not account for key differences among states. For example, it fails to properly adjust for the fact that states differ considerably in size, in one model by effectively ignoring small states, and in the other by assigning small states disproportionately large weight. The study also fails to account for differences in economic climates and regulatory policies among the states that significantly affect carriers' willingness to invest. Similarly, there is no adjustment made for inter-firm differences, such as the cost of capital, which likewise vary among states. Second, the Phoenix study's claim that UNE-P increased investment is based on its model's forecast that, while the BOCs' capital stock fell by 7 percent in 2002, it would have fallen by 13 percent but for the increase in UNE-P lines. The Phoenix study reaches this result because it incorrectly assumes that firms instantaneously adjust capital infrastructure to desired levels. In fact, investments are implemented gradually, not all at once. This is particularly true when firms are reducing capital stock, the pace of which is

179 million total lines in 2002. FCC Local Telephone Competition: Status as of December 31, 2002. At the end of 2001, the BOCs served 86.97% of all loops. FCC Study on Telephone Trends, August 2003. Assuming the same percentage in 2002, BOCs would have served 155.7 million lines. $106 billion/155.7 million = $681 per line.

35 In fact, the Phoenix results suggest that if all BOC lines were converted to UNE-P, the net capital stock of the BOCs would double.

36 Skyline Marketing reports 2002 BOC capex as $19.2 billion. 2002 BOC lines are estimated at 155.7 million (see footnote 35 above). $19.2 billion/155.7 million = $123 per line.

37 This assumes that UNE-P lines are leased at a uniform rate throughout the year.

38 Comments of Alcatel USA, Inc. In the Matter of Review of the Section 251 Unbundling Obligations of Incumbent Local Exchange Carriers, CC Docket No. 01-338, pp. 9-10.
limited by depreciation rates and regulatory constraints such as universal service obligations. By omitting any consideration of how investment responds over time, and how that response may differ when investment is contracting, the Phoenix model over-predicts the BOC investment decline. It is this over-prediction of the decline in BOC investment that produces a positive “surprise.” The Phoenix study then allows just one variable to account for this “increase” in investment, UNE-P line growth. The correlation is simply a construction of the model.

35. In fact, the Phoenix results are contradicted by those produced by other, equally (or more) appealing models evaluating the same or similar data. In the Appendix, we present the results of three alternative models, each of which corrects for certain errors in the Phoenix models. These alternatives are not offered to measure the actual empirical relationship between BOC investment and other variables. Instead, they assess the validity of the Phoenix model to explain the data reliably. If the estimates of the Phoenix regressions were valid, these alternative models should not contradict them. But they do.

36. In the first alternative model, we demonstrate that, by making individual BOCs the focus rather than state-level BOC units, the effect of UNE-P on investment is statistically significant and negative. In the second model, we show that merely by correcting statistical errors in the Phoenix models and by allowing firms to invest over time (rather than all at once), the statistical correlation between UNE-P lines and BOC investment disappears. In the third model, we include a variable to adjust for the cost of capital. This likewise eliminates the statistical significance of an effect of UNE-P on investment. Based on the evidence, therefore, we conclude that the economic relationship between UNE-P and BOC investment estimated by the Phoenix Center paper is the simple artifact of one, unconvincing model. When the data used in the Phoenix study are properly evaluated with more realistic models, they provide no evidence that UNE-P causes BOC investment to increase.

37. This concludes our Declaration.
APPENDIX

An Economic Analysis of Phoenix Center Policy Bulletin No. 5,
*Competition and Bell Company Investment in Telecommunications Plant:
The Effects of UNE-P* (July 9, 2003)
A. Phoenix Center Results

1. The Phoenix Center study conducts a regression analysis using two models in an attempt to measure the relationship between UNE-P lines and investment by incumbent phone companies. Both models rely on data reported at the state level for the years 2000 to 2002; using annual changes reduces the analysis to two time periods. Both models calculate investment as the annual change in net capital stock, which they explain with a constant term and three independent variables: the contemporaneous change in annual state revenues by the BOC; the contemporaneous change in UNE-P lines in the BOC’s in-state territory; and a “dummy” variable indicating whether or not the observation is from the second period (2001 – 2002). Both models look at annual changes for each variable from 2000 to 2001 (28 observations), and from 2001 to 2002 (24 observations). The difference between the two models is that Model 1 looks at these values in absolute terms, while Model 2 divides the dependent variable (net capital stock) and two of the explanatory variables (Revenues and UNE-P lines) by BOC access lines in the state.

Table A1
Phoenix Center Model 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-13.34182</td>
<td>11.00852</td>
<td>0.2315</td>
</tr>
<tr>
<td>Annual Change in Revenue per in-state BOC line</td>
<td>0.423362</td>
<td>0.284543</td>
<td>0.1433</td>
</tr>
<tr>
<td>Annual Change in UNE-P lines per in-state BOC line</td>
<td>759.0850</td>
<td>298.1519</td>
<td>0.0142</td>
</tr>
<tr>
<td>2002 Dummy</td>
<td>-70.93738</td>
<td>15.90493</td>
<td>0.0000</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.443171</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. The Phoenix study’s results for Model 2 (which the paper recommends over Model 1) are summarized in Table A1. The result is that each additional UNE-P line is associated with an immediate increase of $759 in gross investment by the competing BOC within the state where the UNE-P line is offered (shown in Table A1 as the coefficient on “Annual Change in UNE-P lines per in-state BOC line” of 759.0850). The study reports a P-value of .0142 for the estimate, which means that, given that the assumptions of the model are valid, we would expect to see a coefficient this large by chance alone only 1.42% of the time. The model is not robust, however, meaning that it does not produce similar results when it is applied to a similar set of facts, or when its assumptions are made somewhat more realistic. One simple example is instructive. The Phoenix study

1 The dataset excludes lines in Qwest and GTE service areas where UNE-P data were withheld for competitive reasons.
uses investment and revenue data as of December each year, while UNE-P lines are measured in June. Significantly, using all data from December (investment, revenue and UNE-P lines) in either Phoenix model eliminates the statistical significance of the change in UNE-P lines on investment.

B. **Errors in the Model**

3. The Phoenix model is designed to predict BOC investment spending state by state, yet it does not account for key differences between the states that may influence investment. At least three differences are likely to be important. First, the study fails properly to account for the fact that states differ considerably in size. Statistically, the data for each state should be weighted by the number of lines in the state. To do otherwise overemphasizes either the large states or the small states, invalidating statistical tests. Phoenix’s Model 1 effectively ignores small states, which undermines the rationale for using state-level data in the first place. Phoenix’s Model 2 does make an adjustment by dividing some variables by the BOC’s in-state line count. But this adjustment is made selectively; the data associated with the constant and dummy terms are not divided by BOC lines. Neither approach is statistically valid.

4. Second, the study fails to account for differences in economic climates among states. Suppose that a given state is expected to see especially high economic growth over the next decade. That state might well be attractive to both ILECs and CLECs, which believe that profits will be easier to achieve where economic growth is higher, other factors equal. In response to the economic climate forecast, ILEC investments are made and CLECs begin more aggressively selling UNE-P lines. In this case, the correlation between investment and UNE-P lines would be positive, but there would be no causality: the UNE-P lines did not create the investment growth.

5. Third, the study fails to account for differences in regulatory policies among states. In places where taxes are expected to be less, for instance, firms might be more willing to invest in telecommunications or be more interested in marketing UNE-P lines. Other policies include the level of regulated retail prices for local telecommunications service. In states with higher retail rates, ILECs may respond by investing more, while entrants may respond by seeking to provide more UNE-P lines. Again, however, while the correlation between investment and UNE-P lines would be positive, there would be no causality: the UNE-P lines did not create the investment growth.

6. Another problem with the Phoenix model is that it is tested against only state-level data, rather than company-level data (i.e., data for each BOC as a whole). As we show below, when company-level data are used, the results are the reverse of what Phoenix obtains. This alternative approach demonstrates that increases in UNE-P lines are associated with a statistically significant reduction in BOC investment.

7. An even more fundamental set of problems with the Phoenix models arises from their treatment of the timing of investments. Large-scale capital structures like telephone networks are not created all at once. Investment projects such as these have planning and
implementation cycles that typically span several years. To account for this, economic models of investment typically include lagged variables (bringing in data from previous periods). The failure to use lagged variables leads to results that improperly assume that capital formation is instantaneous. The Phoenix model assumes, effectively, a UNE-P line added, for instance, December 1st, results in a large increase in investment expenditures by the Bell company losing that line by December 31st.

8. Further complicating this time element is that there is likely to be a distinct difference between the pace of investment growth during an expansion and the rate at which the capital stock is reduced during a contraction. While it is sometimes economic to expand rapidly, firms tend to depreciate capital slowly (or sell at distress prices). This set of considerations makes it important to use a model that allows for investment decisions to be made incrementally, over time. When a more realistic approach is inserted into the Phoenix models, one that allows for investment decisions to span more than one calendar year, the UNE-P/investment correlation disappears, as shown below.

C. Alternative Models

9. The Phoenix study results derive from spurious correlation – that is, an observed connection that does not result from a true cause-and-effect relationship. This is demonstrated by the fact that alternative models that produce different results are superior to the Phoenix models both in terms of their economic logic (that is, they are based on assumptions that are more realistic) and in their ability to fit the data (meaning that they explain a higher proportion of the variation in BOC investment). We present three such alternative models here. These models do not, by themselves, prove a negative relationship between UNE-P and ILEC investment. Instead, they demonstrate that the data do not support the results asserted by the Phoenix study.

10. The first alternative adjusts the Phoenix model in several respects. First, we add additional data from the second half of 1999 (when UNE-P growth began in some states); second, we measure the data semiannually instead of annually; third, we measure investment as capital expenditures (rather than net investment); and, fourth, we evaluate BOC investment at the company level rather than at the state level. If the Phoenix study had identified a true statistical relationship in the data, we would expect to see their results confirmed. However, this analysis shows a negative relationship between UNE-P and BOC investment, the opposite of what the Phoenix model produces. See Table A2.

2 By using gross investment (capital expenditures) instead of net investment we are able to include Qwest in our analysis, as these data exist throughout the period.

3 We include Qwest among the BOCs.

4 The estimated equation is:

\[I_i = C + R_i + UNEP_i + \varepsilon_i \]

where \(I_i \) is gross investment by a BOC; \(C \) is a constant; \(R_i \) is the BOC's revenues; \(UNEP_i \) is the BOC's number of UNE-P lines; and, \(\varepsilon_i \) is the error term. We estimated the equation using Ordinary Least Squares.
Table A2
Gross Investment Estimated Across Companies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,288,243,000</td>
<td>620,217,900</td>
<td>0.0482</td>
</tr>
<tr>
<td>Revenue</td>
<td>0.229932</td>
<td>0.033951</td>
<td>0.0000</td>
</tr>
<tr>
<td>UNE-P lines</td>
<td>-692</td>
<td>274</td>
<td>0.0184</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.628</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. This alternative model shares many of the weaknesses of the Phoenix model, yet it explains BOC gross investment better according to standard economic metrics. This company-based regression explains 63% of the variation in investment compared with only 44% in the Phoenix Model 2 (and 28% in Phoenix Model 1). The constant, revenue and UNE-P coefficients show significance at the 95% level, whereas in the Phoenix Model 2 the estimated coefficients for the constant and revenue variables were insignificant.⁵

12. The second and third alternative models we use correct two other errors in the Phoenix models: the incorrect weighting of the state-level observations, and the incorrect assumption that wireline telephone companies adjust their entire capital stock instantaneously to the desired level each year. Phoenix Model 1 does not divide state-level variables by the size of the state, which has the effect of assigning disproportionate weight to large states, and effectively ignoring small states. Phoenix Model 2 adjusts two explanatory variables (revenues and UNE-P lines) for state size, but does not adjust two other explanatory terms (the constant and dummy variable). This inverts the state-size problem, giving undue influence to the little states. Either of these errors destroys the validity of the statistical results obtained.

13. To fix the first problem we weight each state-level observation in proportion to its share of total lines. Each state then exerts influence in proportion to the number of lines

⁵ In econometric modeling, it is customary to test whether or not the estimated coefficient on a variable is distinguishable from zero (statistically, “significantly different from zero”). An explanatory model with estimated coefficients not significantly different from zero is suspect. Half the coefficients in Phoenix Model 2 (those on the constant term and revenues) are not statistically distinguishable from zero. All of the coefficients in the model reported above are significantly different from zero; the $-692 estimate of the effect of a UNE-P line on investment would, given the model’s assumptions, be observed by chance alone only 1.84% of the time.
it represents, enabling valid statistical tests to be performed. We do this for both alternative models.6

14. A second correction applied to the Phoenix Center’s analysis eliminates their assumption that BOCs instantly adjust their entire capital stock to exactly the level desired given that year’s revenues and UNE-P lines.7 This is unrealistic in times of expansion, but it is even more unrealistic when firms are reducing capital stock. Reductions are largely constrained by the rate of depreciation, as well as by regulatory obligations.

15. The economic literature offers guidelines for modeling this kind of investment adjustment. One approach is based on the idea that, while firms aim to achieve a desired level of plant and equipment each year, they appreciate that this is a moving target. They rationally believe that circumstances may change. So, to hedge their bets, firms do not attempt to move to a new level of capital stock in just one period, but invest more conservatively by reaching for their goal incrementally. This spreads the process of capital formation out over several years, yielding the flexibility to see what events transpire as they go. This approach is theoretically superior to the instantaneous adjustment model specified by Phoenix. Our second and third alternative models are each based on this dynamic adjustment scheme, in which the optimal level of infrastructure is built over time.

16. Our second alternative model corrects the Phoenix model to properly adjust for state size disparities and to allow for phased investment over multiple years.8 The two explanatory variables, revenues and UNE-P lines, are also defined as their actual levels in a given year rather than their annual change (as they were in the Phoenix specifications).9 The model is then estimated using the Phoenix dataset. See Table A3.

6 Since our first alternative model (above) was at the company level rather than at the state-level, it does not suffer from the size disparity of the Phoenix Center models.

7 The Phoenix study’s use of changes in revenues and UNE-P lines, as opposed to using the total amount of revenue or UNE-P lines, can only be economically justified if the capital stock adjusts to its new desired level within the year. This can be seen by realizing that if it took more than one year to adjust, then this year’s investments would be determined, in part, by last year’s changes in revenues and UNE-P lines. But neither of the Phoenix models incorporates such information from previous years.

8 The estimated equation is:

\[I_t = C + R_t + \text{UNEP}_t + \text{DUM02}_t + \text{CS}_{t-1} + \varepsilon_t \]

where \(I_t \) is net investment; \(C \) is the constant divided by the number of access lines in the observation; \(R_t \) is revenue; \(\text{UNEP}_t \) is the number of UNE-P lines in the observation; \(\text{DUM02}_t \) is a dummy variable equal to 1 if the observation is from 2002 and zero otherwise; \(\text{CS}_{t-1} \) is the previous period’s net capital stock; and, \(\varepsilon_t \) is the error term. We estimated this equation by a “pooled” least squares estimation procedure that recognized that the dataset consists of observations on multiple company-states for two separate years (technically, a pooled time series of cross sections) and weighted each observation in proportion to that state’s share of lines.

9 This adjustment is made to introduce the time element, as represented by the lagged capital stock variable.
Table A3
Partial Adjustment Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>59,004,265</td>
<td>10,949,767</td>
<td>0.0000</td>
</tr>
<tr>
<td>Revenue</td>
<td>0.081032</td>
<td>0.027413</td>
<td>0.0049</td>
</tr>
<tr>
<td>UNE-P lines</td>
<td>70.76159</td>
<td>92.74734</td>
<td>0.4493</td>
</tr>
<tr>
<td>2002 Dummy</td>
<td>-97,734,335</td>
<td>9,493,324</td>
<td>0.0000</td>
</tr>
<tr>
<td>Lagged Capital</td>
<td>-0.102724</td>
<td>0.018927</td>
<td>0.0000</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.982223</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. Our results show that the effect of lagged net capital stock – that is, our adjustment to account for the fact that firms adjust capital stock incrementally -- in predicting BOC investment is statistically significant. The impact of UNE-P lines, however, is not. These results demonstrate that simply adjusting for differences in state sizes and allowing capital stock changes to be phased-in rather than instantaneously achieved eliminates the statistical inference asserted by Phoenix. By using slightly more realistic assumptions, in other words, the correlation between UNE-P and BOC investment is lost.

18. The third alternative model also weights the state-level data by size and allows capital stock changes to be phased-in rather than instantaneously achieved. In addition, it replaces the 2002 dummy variable (constant over all states) in the Phoenix Center models with a variable proposed on page 11 of the Phoenix study. According to the Phoenix study, the dummy was intended to capture: “...time-variant factors that are constant across states such as the cost of capital.” Yet, the cost of capital is not constant across states, and the weighted average cost of capital (WACC) varies by company. Using a model that weights each state in proportion to lines, permits capital stock adjustments to take more than one year, and includes each BOC’s cost of capital, results in an equation\(^\text{10}\) yielding the estimated coefficients in Table A4.

\(^{10}\) The estimated equation is:

\[I_t = C + R_t + \text{UNEP}_t + \text{WACC}_t + \text{CS}_{t-1} + \varepsilon_t \]

where \(I_t\) is net investment; \(C\) is the constant divided by the number of access lines in the observation; \(R_t\) is revenue; \(\text{UNEP}_t\) is the number of UNE-P lines in the observation; \(\text{WACC}_t\) is the weighted average cost of capital for the BOC; \(\text{CS}_{t-1}\) is the previous period’s net capital stock; and, \(\varepsilon_t\) is the error term. We estimated this equation by pooled least squares.
Table A4
Weighted Average Cost of Capital Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,080,000,000</td>
<td>146,000,000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Revenue</td>
<td>0.110774</td>
<td>0.028155</td>
<td>0.0003</td>
</tr>
<tr>
<td>UNE-P lines</td>
<td>-107.0911</td>
<td>101.7795</td>
<td>0.2981</td>
</tr>
<tr>
<td>WACC</td>
<td>107,000,000</td>
<td>13,969,627</td>
<td>0.0000</td>
</tr>
<tr>
<td>Lagged capital</td>
<td>-0.093514</td>
<td>0.024526</td>
<td>0.0004</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.150937</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19. These results show that the effect of an additional UNE-P line on investment is negative, but statistically insignificant. The cost of capital is shown to have a positive and significant coefficient.\footnote{This contrasts with the negative coefficient on the dummy variable it replaces.} Again, the Phoenix study results do not stand up when alternative models, or data, are used to test the economic relationships asserted. Our conclusion is that the Phoenix study reveals no evidence of the true causality between UNE-P and telecommunications investment.
I declare, under penalty of perjury, that the foregoing is true and correct.

[Signature]

Thomas W. Hadlett

Executed on: September 2, 2003
I declare, under penalty of perjury, that the foregoing is true and correct.

Arthur M. Havenner

Executed on: September 2, 2003
I declare, under penalty of perjury, that the foregoing is true and correct.

Coleman Bazelon

Executed on: September 2, 2003
ATTACHMENT 1
Thomas W. Hazlett
Curriculum Vitae

Manhattan Institute for Policy Research
1615 M Street, NW
Suite 400
Washington DC 20036-3209

2001- present ☞ Senior Fellow, Manhattan Institute for Policy Research
1991- present ☞ Senior Research Associate, Columbia Institute of Tele-Information
2001- present ☞ Fellow, AEI-Brookings Joint Center for Regulatory Studies
2000- present ☞ Senior Adviser, Analysis Group/Economics
2002- present ☞ Columnist, FT.com New Economy Policy Forum

Degree: Ph.D., UCLA, 1984 (Economics)

Fields of Specialization:

Research: Law & Economics, Industrial Organization, Telecommunications Policy
Teaching: Microeconomics, Corporate Finance, Government Regulation

Outstanding Lecturer Award, UC Davis Managerial Economics Major (1998)

Related Experience:

1996-2000 ☞ Professor of Agricultural & Resource Economics, UC Davis
1990-1996 ☞ Assoc. Prof. of Agricultural & Resource Economics, UC Davis
1984-1990 ☞ Asst. Prof. of Agricultural & Resource Economics, UC Davis
1993-2000 ☞ Director, Program on Telecommunications Policy, UC Davis
1998-2001 ☞ Resident Scholar, American Enterprise Institute
1999-2000 ☞ Senior Adviser, Arthur Andersen
1990-1991 ☞ Visiting Scholar, Grad. School of Business, Columbia University
1990-1991 ☞ Citicorp/Wriston Fellow, Manhattan Institute for Policy Research
1985-1989 ☞ Commentator, "Byline," syndicated to 200 radio stations by the Associated Press
1988-1991 ☞ Contributing Correspondent to The Economist (of London)
Affiliations:

Academic Advisory Board, Institute for Justice (Washington, D.C.)
Member, Mont Pelerin Society
Senior Research Fellow, Columbia Institute for Tele-Information (Columbia University)
Adjunct Scholar, Cato Institute (Washington, D.C.)
Senior Fellow, Liberal Institute (Prague, Czech Republic)
Member, American Economics Association, American Law & Economics Association, Southern Economics Association

Book:

Public Policy Toward Cable Television, Volume I: The Economics of Rate Controls, co-authored with Matthew Spitzer, (Cambridge, MA: M.I.T. Press, November 1997).

Research Articles:

"The Role of Property Rights in the Positive Theory of Monopoly," Managerial and Decision Economics 8 (September 1987), 201-212.

"Predation in Local Cable Television Markets," *Antitrust Bulletin XL* (Fall 1995), 609-44.

"Was the Fairness Doctrine a 'Chilling Effect'? Evidence from the Post-Deregulation Radio Market" (with David Sosa) *Journal of Legal Studies XXVI* (January 1997), 307-29.

"Microsoft's Browser 'Jihad': Competitive or Predatory?" 9 Cornell Journal of Law & Public Policy (Fall 1999), 29-59.

Articles Submitted or In-Progress:

"An Experiment in Airwave Ownership: Spectrum Liberalization in Central America," with Giancarlo Ibarguen, paper presented to the Association for Private Enterprise Education, Cancun, Mexico (April 9, 2002).

Book Chapters & Other Essays:

"Competition Policy in Cable Television," *Regulatory Reform* III (Industry Regulation Committee of the ABA Section of Antitrust Law; May 1990), 7-15.

"Should Telephone Companies Provide Cable TV?," *Regulation* 13 (Winter 1990), 72-80.

"Is the 'Public Interest' in the Public Interest?" in Donald L. Alexander, ed., Telecommunications Policy: Have Regulators Dialed the Wrong Number? (Westport, CT: Praeger; 1997), 49-74.

Special Teaching Assignments/Lectures:

"Economic Challenges for the Next Four Years," A Conference for Journalists presented by the Foundation for American Communications, Los Angeles, California (January 1993).

Ministry of Post & Telecommunications Institute, lecture program arranged by Columbia Institute on Tele-Information, Tokyo, Japan (March 1993).

"Nafta, Gatt and Other Four-Letter Words," An economics conference for journalists presented by the Foundation for American Communications, San Diego, California (December 1993).

Institute on Economics for Journalists presented by the Foundation for American Communication, funded by Ford Foundation, Tomales Bay, California (July 1994).

Ministry of Post & Telecommunications Institute, (program arranged by Columbia Institute on Tele-Information), Tokyo, Japan (December 1994).

Institute on Economics for Journalists presented by the Foundation for American Communications, Tomales Bay, California (July 1995).

Center for Market Processes, Congressional Staff Briefing on the economics of regulation, Williamsburg, Virginia (August 1995).

Institute on Economics for Journalists presented by the Foundation for American Communications, Tomales Bay, California (August 1997).

The Stranahan Lecture, University of Toledo School of Law (October 1997)

Distinguished Pantaleon/Concepcion Chair, Universidad Francisco Marroquin, Guatemala (October 1997).

Telecommunications Policy, Seminar for Journalists, Foundation for American Communications, San Diego, California (December 1998).

Institute on Economics for Journalists presented by the Foundation for American Communications, Tomales Bay, California (August 1999).

Institute on Economics for Journalists presented by the Foundation for American Communications, Tomales Bay, California (June 2000).

Monographs:

Refereed or Reviewed Manuscripts for:

Consulting:

Government of United Kingdom, Congressional Budget Office, U.S. General Accounting Office, County of Santa Cruz, California Department of Justice, California Governor's Office, Progress & Freedom Foundation, Alliance for Public Technology, Common Cause, California Power Exchange, the California Board of Equalization, the U.S. House Commerce Committee staff, and the U.S. Senate Commerce Committee staff.

Oral Testimony:

Before the Joint Economic Committee of Congress on the subject of urban enterprise zones, October 1981.

Before the California Public Broadcasting Commission on the subject of cable television deregulation, February 1982.

Before the Compton, California City Council, on the subject of enterprise zones, October 1982.

Before the Pacific Grove, California City Council, on the subject of local land-use regulations, February 1984.

Before the Federal Competition Board, Republic of South Africa, on the subject of monopoly and industrial concentration, June 1985.

Before the U.S. Commission on Civil Rights, on the subject of housing market discrimination, November 1985.

Before the Santa Cruz, California City Council, on the subject of municipal franchising of cable television, November 1985.

Before the U.S. District Court for Northern California, in Pacific West v. Sacramento Cable Television, on predatory behavior in cable competition, April 1991.

Before the U.S. Senate, Committee on Commerce, Science and Transportation, regarding the use of auctions for High Definition Television licenses, September 1995.

Before the U.S. Senate Budget Committee, regarding auctioning digital television licenses, March 1996.

Before the U.S. Senate, Committee on Commerce, Science and Transportation, regarding spectrum regulatory policy, March 1996.

Before members of the Guatemalan Congress, regarding telecommunications policy reform legislation, September 1996.

Before Federal Bankruptcy Court (Dallas, Texas) regarding the Personal Communications Service license auctions conducted by the Federal Communications Commission, April 1998.

Before the Federal Communications Commission, En Banc hearing on Spectrum Allocation, April 1999.

Before the Senate Commerce Committee, Hearings on the Transition to Digital Television, March 1, 2001.

Book Reviews and Op-Eds:

"The Fairness Doctrine was Never Quite Fair," Los Angeles Times (4 October, 1987).

"Negative Icons Nose to Nose on 'Geraldo,'" Wall Street Journal (8 November, 1988).

Review of Thomas Streeter's *Selling the Air*, *Journal of Economic Literature* XXXV (September 1997), 1411-12.

"Good Riddance to Cable TV Regulations," *Wall Street Journal* (1 April, 1999).

“Surprise, Surprise: Cable Rates Fall After Deregulation,” *Barron’s* (28 February, 2000).

“Heavy Burden,” *Forbes ASAP* (Nov. 27, 2000), 270.

“Hostage Stand-off” (spectrum allocation at 700MHz), *Barron's* (March 19, 2001).

“Big Oil’s Bad Investment,” National Review Online (January 4, 2002).
“Abolish Television,” Financial Times’ New Economy Policy Forum (June 5, 2002).
“We Don’t Want Our DTV,” Wall Street Journal (August 8, 2002).
“Money for Nothing,” Slate (October 7, 2002)

Other General Circulation Articles, Columns, Reviews and Interviews
ATTACHMENT 2
CURRICULUM VITAE

Arthur M. Havenner
August 2003

Personal Data
Address: 1317 Tulane Drive, Davis, CA 95616
Telephone: (530) 753-3182 Home (530) 757-6902 Home FAX (private)
 (530) 752-7079 Office (530) 752-5614 Office FAX (shared)
Email: havenner@ucdavis.edu
Birth date: December 21, 1943; Washington, D.C.

Education

B.A. Economics 1966, University of Maryland
M.S. Economics 1967, University of Michigan
Ph.D. Economics 1972, Michigan State University

Professional Positions

Professor, University of California at Davis, Department of Agricultural and Resource Economics, July 1985 to present, teaching graduate and undergraduate courses in econometrics and finance.

Visiting Associate Professor of Econometrics and Statistics, University of Chicago, Graduate School of Business, September 1985 to June 1986, teaching a Ph.D. level course in forecasting.

Associate Professor, University of California, Davis, Agricultural Economics Department, July 1979 to June 1985, teaching graduate and undergraduate courses in econometrics and statistics.

Visiting Professor, San Jose State University, September 1978 to June 1979, on one year leave of absence from New York University, teaching graduate and undergraduate courses in econometrics, forecasting, and macroeconomics.

Assistant Professor, New York University, Graduate School of Business Administration, September 1976 to June 1979, teaching graduate courses in econometrics and forecasting.

Economist, Board of Governors of the Federal Reserve System (Washington, D.C.), November 1971 to September 1976. Primary activities included development of optimal control algorithms for the MIT-Penn-SSRC quarterly econometric model (resulting in techniques now routinely used at the Board); econometric software and database access design; quarterly model development and general Federal Reserve staff econometric support; and policy analysis in macroeconomic and econometric areas.

Professional Activities

Associate Editor:

Program Chair:
 Society for Economic Dynamics and Control, 1988 annual meeting.
Invited Sessions;
Invited sessions have been organized for various organizations, including the International Electrical and Electronic Engineers, and the American Statistical Association (1985 and 1995).

Refereeing:

Selected Seminars:
Formal seminars have been given at a number of institutions, including the University of California, Santa Barbara, Economics (twice); University of California Berkeley Agricultural Economics; Federal Reserve Board (twice from outside); Purdue University Agricultural Economics; University of Chicago Graduate School of Business Econometrics and Statistics Colloquium (twice); University of Rhode Island Campus Invited Scholar; Stanford Economics Seminar; M.I.T./Harvard Econometrics Seminar; University of Arizona Agricultural Economics; University of California Davis Statistics; University of California San Diego Economics; and others.

Invited address:

Panel member:
American Bar Association Litigation Section, Products Liability Panel Discussion, March 1, 1991, Palm Springs, CA.
Manhattan Institute Forum on Products Liability, San Francisco, July 10, 1990; attendance of California judicial leaders by invitation only.

Selected grants:
Multiple Giannini Foundation grants, approximately $10,000 each; USDA marketing fellowships, $90,000 (written for the department while chairing the Graduate Advisory Committee); USDA NRI marketing order study grant, $95,000; USDA NRI state space ARCH model development and application to live cattle price volatility, $40,711; others.

Publications and Papers

"Optimal Macroeconomic Control Policies," (see above) was selected for re-publication as "<Politicas Macroeconomicas de Control Optimo> in *Hacienda Publica Espanola Instituto de Estudios Fiscales*, No. 51, 1978, Madrid.

"A Discrete Dependent Variable Approach to Predicting the Success of Agricultural Futures Markets," February 1989 (University of California, Agricultural Economics Department, Working Paper 89-4), with S. Chambers.

"Not Quite a Revolution in Products Liability," Manhattan Institute Judicial Studies White Paper, 1990. [A column by Peter Huber in *Forbes* magazine in October 1990 was devoted to reviewing this paper, and it resulted in an interview on a video produced by the Manhattan Institute for Policy Research ("Liability: Injustice for All") narrated by Walter Cronkite.] An earlier expanded version titled "A Critique of 'The Quiet Revolution in Products Liability'" June 1990 (University of California, Agricultural Economics Department Working Paper 90-9) also received press attention.

"Asymptotically Ideal Models of Demand and Production," draft, 1999, with A. Saha.

ATTACHMENT 3
COLEMAN D. BAZELON, Ph.D.
Vice President

Phone: (202) 530-3982
Fax: (202) 530-0436
cbazelon@analysisgroup.com

1747 Pennsylvania Ave. NW
Suite 250
Washington, DC 20006

EDUCATION

B.A., College of Social Studies, Wesleyan University, Middletown, CT, 1986.

PROFESSIONAL EXPERIENCE

2001 – Present Vice President, Analysis Group Economics, Washington, D.C.

1995-2001 Principal Analyst, Congressional Budget Office, Washington, D.C.

PUBLICATIONS

Completing the Transition to Digital Television, Congressional Budget Office, September 1999.*

Two Approaches for Increasing Spectrum Fees, Congressional Budget Office, November 1998 (Coauthored with David Moore*).

Where Do We Go From Here? The FCC Auctions and the Future of Radio Spectrum Management, Congressional Budget Office, April 1997 (Coauthored with Perry Beider and David Moore*).

* CBO publications are not cited with the author’s name.

SEMINARS AND PRESENTATIONS

A Note on Correlation, ASSA Annual Meetings, Atlanta, GA, January 6, 2002.

The Budgetary Treatment of Asset Sales, Briefing for the staff of the Senate Budget Committee, Washington, DC, February 1997.

LDC Debt and Policy Linkages in the Determination of World Commodity Prices, with Gordon Raaswer, Selected Paper, AAEA Annual Meeting, Vancouver, B.C., Canada, August 1990.

TESTIMONY

CERTIFICATE OF SERVICE

I, Carole Walsh, do hereby certify that on this 2nd day of September, 2003, I caused true and correct copies of the foregoing Reply Comments of Verizon Telephone Companies in Support of Petition for Expedited Forbearance to be served by first class mail, postage prepaid, upon the following parties:

Gretchen Dumas
California Public Utilities Commission
505 Van Ness Avenue
San Francisco, CA 94102

Charles C. Hunter, General Counsel
Catherine M. Hannan,
Bridgecom International, Inc.
115 Stevens Avenue
Third Floor
Valhalla, NY 10595

William B. Wilhelm
Michael P. Donahue
Swidler Berlin Shereff Friedman, LLP
3000 K Street, N.W.
Washington, D.C. 20007
Counsel for the Association of Communications Enterprises
CIMCO Communications, Inc.
Granite Telecommunications, Inc.

Jonathan D. Lee
The Competitive Telecommunications Associations
1900 M Street, N.W.
Suite 800
Washington, D.C. 20036

Genevieve Morelli
Michael B. Hazzard
Kelley Drye & Warren LLP
1200 Nineteenth Street, NW, Suite 500
Washington, D.C. 20036
Counsel for the PACE Coalition

Brad Mutschelknaus
Robert J. Aamoth
Todd D. Daubert
Kelley Drye & Warren LLP
1200 19th Street, N.W.
Suite 500
Washington, D.C. 20036
Counsel for Sage Telecom, Inc.
Talk America Inc.

Howard Siegel
Logix Communications
210 Barton Springs Road
Suite 100
Austin, TX 78704

James M. Smith
Roger A. Briney
Julie K. Corsig
Davis Wright Tremaine, LLP
1500 K Street, NW, Suite 450
Washington, D.C. 20005-1272
Jim Lamoureux
Gary L. Phillips
Paul K. Mancini
SBC Communications Inc.
1401 Eye Street, N.W., Suite 400
Washington, D.C. 20005

Karen Brinkmann
Jeffrey A. Marks
Latham & Watkins LLP
Suite 1000
555 Eleventh Street, N.W.
Washington, D.C. 20004-1304
Counsel for ACS of Anchorage, Inc.

Praveen Goyal
Senior Counsel for Government & Regulatory Affairs
Covad Communications Company
600 14th Street, N.W., Suite 750
Washington, D.C. 20005

Richard M. Rindler
Patrick J. Donovan
Harisha J. Bastiampillai
Swidler Berlin Shereff Friedman, LLP
3000 K Street, N.W.
Washington, D.C. 20007
Counsel for Focal Communications Corporations, McLeodUSA
Telecommunications Services, Inc., PacWest Telecomm, Inc., and TDS Metrocom, LLC

Danny E. Adams
Kelley Drye & Warren LLP
8000 Towers Crescent Drive
Suite 1200
Vienna, VA 22182
Counsel for Telscape Communications, Inc.

Ross A. Buntrock
Kelley Drye & Warren LLP
1200 19th Street, N.W.
Suite 500
Washington, D.C. 20036
Counsel for Telscape Communications, Inc.

Cynthia B. Miller, Esquire
Office of Federal & Legislative Liaison
Florida Public Service Commission
2540 Shumard Oak Boulevard
Tallahassee, FL 32399-0850

Maryanne Reynolds Martin
Assistant Counsel
P.O. Box 3265
Harrisburg, PA 17105-3265
Counsel for Pennsylvania Public Utility Commission

Sharon J. Devine
Craig J. Brown
John S. Fischer
Qwest Corporation
607 14th Street, N.W., Suite 950
Washington, D.C. 20005

Richard M. Sbaratta
BellSouth Telecommunications, Inc.
675 West Peachtree Street, N.E.
Suite 4300
Atlanta, GA 30375
Lawrence R. Freedman
David A. Konuch
James N. Moskowitz
Fleishman & Walsh, L.L.P.
1400 16th Street, N.W., 6th Floor
Washington, D.C. 20006
Counsel for WorldNet Telecommunications, Inc.

Grace S. Kurdian
Deputy Attorney General
Office of the Attorney General
Department of Law and Public Safety
Division of Law
124 Halsey Street
P.O. Box 45029
Newark, NJ 07101

Christopher J. White, Esq.
Seema M. Singh, Esq.
Ratepayer Advocate
New Jersey Division of Ratepayer Advocate
31 Clinton Street, 11th Floor
Newark, NJ 07101

Charles D. Land, P.E.
TEXALTEL
500 North Capitol of Texas Highway
Building 8, Suite 250
Austin, TX 78746

Lawrence E. Sarjeant
Indra Sehdev Chalk
Michael T. McMenamin
Robin E. Tuttle
United States Telecom Association
1401 H Street, NW, Suite 600
Washington, DC 20005

David C. Bergmann
NASUCA Telecommunications Committee
Ohio Consumers’ Counsel
10 West Broad Street, Suite 1800
Columbus, OH 43215-3485

Robert B. Nelson
NARUC
1101 Vermont, N.W.
Suite 200
Washington, D.C. 20005

Dawn Jablonski Ryman
John C. Graham
Public Service Commission of the State of New York
Three Empire State Plaza
Albany, NY 12223-1350

Thomas M. Koutsky
Z-Tel Communications, Inc.
1200 19th Street, N.W.
Suite 500
Washington, D.C. 20036
Counsel for Z-Tel Communications, Inc.

Christopher J. Wright
Timothy J. Simeone
Maureen K. Flood
Harris, Wiltshire & Grannis LLP
1200 Eighteenth Street, N.W.
Washington, D.C. 20036
Counsel for Z-Tel Communications, Inc.

Mark D. Schneider
Marc A. Goldman
Jenner & Block
601 13th Street, N.W.
Washington, D.C. 20005

Kimberly A. Scardino
Lori E. Wright
MCI
1133 19th Street, N.W.
Washington, D.C. 20036
David L. Lawson
David M. Levy
Richard Klingler
C. Frederick Beckner III
Sidney Austin Brown & Wood, LLP
1501 K Street, NW
Washington, DC 20005
Counsel for AT&T Corp.

Leonard J. Cali
Lawrence J. Lafaro
Richard H. Rubin
Mart Vaarsi
AT&T Corp.
One AT&T Way
Bedminster, NJ 07921
Counsel for AT&T Corp.

John E. Benedict
Richard Juhnke
Sprint Corporation
Suite 400
401 Ninth Street, NW
Washington, DC 20004

Qualex International
Federal Communications Commission
445 12th Street, S.W.
Room CY-B402
Washington, D.C. 20554

Carole Walsh